2004 Vol. 6, No. 24 4443–4446

Synthesis of Type II β -Turn Surrogate Dipeptides Based on syn- α -Amino- α , β -dialkyl- β -lactams

Claudio Palomo,*,† Jesus M. Aizpurua,*,† Iñaki Ganboa,† Ana Benito,† Lourdes Cuerdo,† Raluca M. Fratila,† Azucena Jimenez,† Iraida Loinaz,† José I. Miranda,† Kinga R. Pytlewska,† Andreea Micle,† and Anthony Linden‡

Departamento de Química Organica-I, Universidad del Pais Vasco, Facultad de Química, Apdo 1072, 20080 San Sebastian, Spain, Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

qppaiipj@sc.ehu.es

Received August 19, 2004

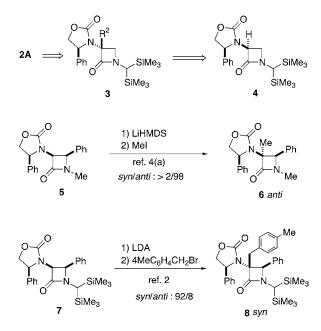
ABSTRACT

The achiral bis(trimethylsilyl)methyl group acts as an efficient stereochemical determinant of the α -alkylation reaction in β -branched α -phenyloxazolidinyl- or α -diphenyloxazolidinyl- β -lactams and provides the first stereocontrolled access to syn- α -amino- α , β -dialkyl(aryl)- β -lactams. These products are readily transformed into type II β -turn mimetic surrogates 2B.

During the last two decades, β -turn peptidomimetics¹ have been sought as promising candidates for drug discovery due to their ability to agonize or antagonize important biological processes. We recently have established a novel approach to the design of type II β -turn mimetics² based on the separation of restriction and recognition elements principle using the $-(\alpha$ -alkyl- α -amino- β -lactam)-(glycine)- segment as the betagenic (i + 1)-(i + 2)- central core (Figure 1). In the same report, we provided MD and NMR conformational evidence that showed that only α -alkylated or syn- α , β -dialkylated β -lactam peptides 1A and 1B stabilize

 β -turned conformations in DMSO, whereas the α -unbranched or anti- α , β -dialkylated β -lactam peptides collapse to open conformations.

While the synthesis of dipeptide surrogates **2A** has been addressed for the first time in our laboratory³ using the α -alkylation of N-[bis(trimethylsilyl)methyl]- β -lactams **4** as a key step (Figure 2), the extension of this methodology to


Figure 1. β -Lactam peptide approach to type II β -turn mimetics.

[†] Universidad del Pais Vasco.

[‡] Organisch-chemisches Institut der Universität Zürich.

⁽¹⁾ Kahn, M.; Eguchi, M. Synthesis of Peptides Incorporating β -Turn Inducers and Mimetics. In *Houben-Weyl, Methods of Organic Chemistry*; Felix, A., Moroder, L., Toniolo, C., Eds.; Thieme: Stuttgart, 2003; Vol. E22c, pp 695–740 and references therein.

⁽²⁾ Palomo, C.; Aizpurua, J. M.; Benito, A.; Miranda, J. I.; Fratila, R. M.; Matute, C.; Domercq, M.; Gago, F.; Martin-Santamaria, S.; Linden, A. J. Am. Chem. Soc. 2003, 125, 16243—16260.

Figure 2. Stereochemical sense of the α -alkylation of α -(4-phenyl-1,3-oxazolidin-3-yl)- β -lactams.

the preparation of *syn*-dialkyl dipeptides **2B** is not obvious. Indeed, Ojima and others⁴ have established that the asymmetric alkylation of enolates generated by the deprotonation of β -substituted monocyclic β -lactams invariably leads to *anti*- α , β -dialkyl derivatives (e.g., **5**—**6**).

Nevertheless, contrary to these general observations, we have found² that several structurally very similar β -substituted N-[bis(trimethylsilyl)methyl]- β -lactams can afford mainly syn- α -alkylated products (e.g., 7—8). Herein we report the first general synthesis of syn- α , β -dialkyl(aryl)- β -lactam dipeptides **2B** as well as a mechanistic model and experimental evidence that accounts for the stereochemistry observed as a function of the substituents borne by the nitrogen atom of the β -lactam.

To study the scope and stereochemical outcome of the α -alkylation reaction, a series of β -branched *N*-bis(trimethylsilyl)methyl- β -lactams were prepared from imines **9** and mono- or diphenyloxazolidinylacetic acid chlorides, according to the described methods (Scheme 1).⁵

As shown in Table 1, β -lactams 11–16 were completely deprotonated within a few minutes with LDA in THF at -78 °C, and the resulting enolates were cleanly alkylated in fair to good yields, either with activated benzyl and allyl bromides or with primary normal alkyl iodides.⁶ Secondary alkyl iodides failed to facilitate the reaction.

Scheme 1 SiMe₃ 9 SiMe₃ ref. 5 IDA R²X THF, -78→20°C SiMe₃ SiMe₃ syn R=H R=H 17 $R^1 = {}^{i}Bu$; $R^2 = PhCH_2$ 11 R¹= ⁱBu 12 R1= Pr 18 R1 = Bu; R2 = CH2 = CHCH2 19 R¹= ⁱBu; R²= Me 13 R1= Ph **20** R¹= ⁱPr; R²= Me₂C=CHCH₂ 21 R1= Ph; R2= PhCH2 22 R¹= Ph; R²= CH₂=CMeCH₂ 23 R¹= Ph; R²= CH₂=CHCH₂ 24 R1= Ph; R2= Me R= Ph R= Ph 14 R¹= Me 25 R¹= Me; R²= PhCH₂ 15 R1= Bu 26 R1 = Me; R2 = CH2 = CHCH2 16 R1= Ph 27 R¹= iBu; R²= PhCH₂ 28 R1= Bu; R2= 2NaphthCH2 **29** $R^1 = {}^{i}Bu$; $R^2 = CH_2 = CHCH_2$ **30** R¹= ⁱBu; R²= nBu 31 R¹= ⁱBu; R²= Me 32 R¹= Ph; R²= PhCH₂ 33 R^1 = Ph; R^2 = Me

Inspection of the alkylation reaction of α-phenyloxazolidinyl- β -lactams (11–13; R = H; entries 1–9) led to the identification of the structural factors governing the syn/anti stereoselectivity. For instance, increasing the bulkiness of the R² group in the alkylating agent was found to improve the syn ratio. This effect was apparent from the good stereoselection observed for benzyl bromide (entries 1 and 5) or α -branched ally bromides (entry 6), compared with the almost equimolar diastereomeric mixtures obtained from simple or β -substituted allyl bromides (entries 2, 4, and 7). Small reactive electrophiles like methyl iodide or methyl triflate (entries 3, 8, and 9) gave the poorer syn stereoselectivities. On the other hand, the aliphatic or aromatic nature of the β -substituent (R¹) seemed to exert a limited but appreciable effect on the diastereoselection, with the aliphatic groups giving uniformly higher ratios of syn isomers

4444 Org. Lett., Vol. 6, No. 24, **200**4

^{(3) (}a) Palomo, C.; Aizpurua, J. M.; Galarza, R.; Benito, A.; Khamrai, U.K.; Eikeseth, U.; Linden, A. *Tetrahedron* **2000**, *56*, 5563–5570. (b) Palomo, C.; Aizpurua, J. M.; Benito, A.; Galarza, R.; Khamrai, U.K.; Vazquez, J.; DePascual-Teresa, B.; Nieto, P. M.; Linden, A. *Angew. Chem., Int. Ed.* **1999**, *38*, 3056–3058.

^{(4) (}a) Ojima, I.; Chen, H.-J. C.; Qiu, X. *Tetrahedron* **1988**, 44, 5307–5318. (b) Ojima, I. *Acc. Chem. Res.* **1995**, 28, 383–389. (c) Ojima, I. In *The Organic Chemistry of β-Lactams*; Georg, G. I., Ed.; VCH: New York, 1992; p 197. (d) Högberg, H.-E., Jr. In *Houben-Weyl, Stereoselective Synthesis*; Helmchen, G., Hoffmann, R. W., Mulzer, J.; Schaumann, E.; Thieme: Stuttgart, 1996; E21 Vol. 2, p 791.

⁽⁵⁾ In contrast to conventional imines that only afford β -aryl- β -lactams upon Staudinger [2 + 2] cycloaddition with aminoketenes, imines **9** give either β -aryl-, β -alkyl-, or β -unsubstituted β -lactams in good yields and excellent stereoselectivities; see: (a) Palomo, C.; Aizpurua, J. M.; Legido, M.; Galarza, R.; Deya, P. M.; Dunogues, J.; Picard, J. P.; Ricci, A.; Seconi, G. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 1239–1241. (b) Palomo, C.; Aizpurua, J. M.; Legido, M.; Mielgo, A.; Galarza, R. *Chem. Eur. J.* **1997**, 3 1432–1441

⁽⁶⁾ Although partial isomerization and decomposition was detected in some instances for the lithium enolates of α -diphenyloxazolidinyl- β -lactams (14–16; R = Ph), this problem was solved by warming immediately the mixtures of the enolates and alkyl halides from -78 to -30 °C. See Supporting Information for details.

Table 1. α -Alkylation of β -Substituted β -Lactams 11–16

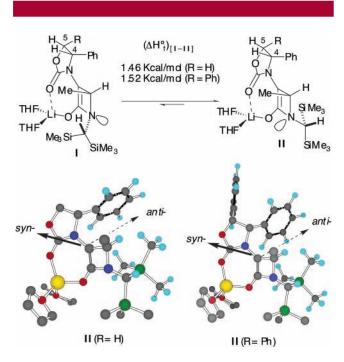
entry	R	product	R^2-X	yield (%)a	syn:anti ^b
1	Н	17	$\mathrm{PhCH}_{2}\mathrm{Br}$	82	>98:2
2	Η	18	CH_2 = $CHCH_2Br$	91	67:33
3	Η	19	MeI	90	53:47
4	Η	20	CMe_2 = $CHCH_2Br$	80	60:40
5	Η	21	$\mathrm{PhCH}_{2}\mathrm{Br}$	84	90:10
6	Η	22	CH_2 = $CMeCH_2Br$	67	93:7
7	Η	23	CH_2 = $CHCH_2Br$	85	50:50
8	Η	24	MeI	75	10:90
9	Η	24	MeOTf	c	30:70
10	Ph	25	$\mathrm{PhCH}_{2}\mathrm{Br}$	67	>98:2
11	Ph	26	CH_2 = $CHCH_2Br$	72^d	95:5
12	Ph	27	$\mathrm{PhCH}_{2}\mathrm{Br}$	92	>98:2
13	Ph	28	$2NaphthCH_2Br$	78	>98:2
14	Ph	29	CH_2 = $CHCH_2Br$	85	>98:2
15	Ph	30	$^n\mathrm{BuI}$	58	>98:2
16	Ph	31	MeI	70^e	71:29
17	Ph	31	MeI	82^d	95:5
18	Ph	32	$\mathrm{PhCH}_{2}\mathrm{Br}$	81	>98:2
19	Ph	33	MeI	84^d	73:27

^a Yield of the pure mixture of syn and anti products. ^b Determined by ¹H NMR (500 MHz) analysis of the reaction crude. Configurations were assessed by NOE experiments and X-ray crystallography (compounds 28 and 30; see Supporting Information). ^c Yield not determined. ^d Enolate trapping carried out at −30 °C for 16 h. ^d Enolate trapping carried out at −78 °C for 16 h.

than their aromatic counterparts (compare entries 1, 2, and 3 with entries 5, 7, and 8, respectively). Our finding was that incorporation of a second phenyl group in the oxazolidinone ring (α -diphenyloxazolidinyl- β -lactams **14**–**16**; R = Ph) significantly enhanced the syn stereoselectivity in all instances, including those involving simple allyl and normal alkyl groups, and provided a convenient preparative entry to the desired α -amino syn- α , β -dialkyl(aryl)- β -lactams.

Transformation of α -diphenyloxazolidinyl- β -lactams into the dipeptide surrogates of type **2B** was carried out uneventfully, Scheme 2, by hydrogenolytic removal of the diphenyloxazolidinone ring and simultaneous Boc protection of the α -amino- β -lactam group, followed by the elaboration of the *N*-bis(trimethylsilyl)methyl moiety to the *N*-carboxymethyl group. For example, Boc-(β -lactam)-(Gly)-H fragments **36** and **37** were obtained in overall yields of 73 and 65%, respectively.

To gain insight into the *specific* syn stereodirecting effect exerted by the bis(trimethylsilyl) methyl and diphenyl-oxazolidinyl groups on the alkylation reactions disclosed above, we (a) explored the behavior of N-trimethylsilyl-methyl- β -lactams bearing less hindered groups at the nitrogen atom and (b) conducted computational modeling of the respective intermediate β -lactam lithium enolates.


We found (Scheme 3) that reaction of N-bis-silyl- β -lactams 11 and 13 with cesium fluoride or tetra-n-butylammonium fluoride, respectively, resulted in clean mono- or didesilylation of the bis(trimethylsilyl)methyl moiety to provide the β -lactams 38–41 in high yields. α -Benzylation of N-trimethylsilylmethyl- β -lactams 38 and 39 under conditions identical to those used above afforded exclusively the anti

Scheme 2

isomers 42 and 43, whereas desilylation of bis-silyl- α , β -dialkyl- β -lactams 17 or 21 gave the corresponding syn isomers. These results were meaningful, not only because they clearly stated the necessity of a *second* trimethylsilyl group to reach any syn selectivity but also because they anticipated the obtention of either syn or anti isomers from the *same* starting *N*-bis(trimethylsilyl)methyl- β -lactam by simply desilylating the N-substituent before the alkylation step.

A preliminary RHF/PM3⁷ conformational analysis of the putative lithium enolates (Figure 3) arising from the deprotonation of two β -methyl- β -lactam models (R = H and R =

Org. Lett., Vol. 6, No. 24, **2004**

Figure 3. Comparison of the calculated RHF/PM3 structures of the lithium enolates of β -methyl β -lactam models (R = H) and (R = Ph). Some hydrogen atoms are omitted for clarity.

Ph) was conducted, assuming a lithium cation chelated by the oxazolidinone carbonyl oxygen atom and solvated by the THF solvent. In each case, two significant energy minima were characterized with the β -lactam nitrogen pyramidalized. As expected, for the more stable conformations (Π), the bis(trimethylsilyl)methyl group and the β -substituent (Me) were located at opposite faces of the β -lactam ring. Moreover, in these conformers, one of the SiMe₃ groups shielded the back face of the enolate, thereby inhibiting the formation of anti- α , β -dialkylated products. Finally, the second 5-phenyl group borne by the oxazolidinone ring in enolate Π (R = Ph) caused a partial rotation of the 4-phenyl group with respect to Π (R = H), which is consistent with the greater syn stereoselectivity observed for α -diphenyl-oxazolidinyl- β -lactams with respect to the monophenyl counterparts.

In summary, the α -alkylation of β -substituted α -phenyloxazolidinyl-N-bis(trimethylsilyl)methyl- β -lactams represents the first method for preparing enantiopure syn- α -amino- α , β -dialkyl(aryl)- β -lactams, which are suitable intermediates for the synthesis of type II β -turn dipeptide surrogates.

Acknowledgment. This work was supported by Spanish Ministerio de Educación y Ciencia (MEC; Project BQU2002-01737). Grants from Gobierno Vasco to A.B. and I.L. and from European Commission (Marie Curie HMPT-CT-2000-00173) to R.M.F., A.M., and K.R.P. are acknowledged.

Supporting Information Available: Preparation procedures and physical and spectroscopic data for compounds 17–43 and crystallographic data in CIF format and ORTEP diagrams of 28 and 30. This material is available free of charge via the Internet at http://pubs.acs.org.

OL048348C

4446 Org. Lett., Vol. 6, No. 24, **200**4

⁽⁷⁾ MacSpartan Plus, version 1.2.2; Wavefunction, Inc: Irvine, CA. The actual origin of the discrimination between the syn and anti alkylation paths is given by the energy differences of the respective transition states and not necessarily by the relative stability of the enolate intermediates.

⁽⁸⁾ For crystallographic evidence concerning the tetrahedral character of the nitrogen atom in lactams and amides, see: (a) Laube, T.; Dunitz, J. D.; Seebach, D. *Helv. Chim. Acta* **1985**, *68*, 1373–1393. (b) Laube, T.; Seebach, D. *Chem. Ber.* **1985**, *118*, 764–773.